unununununununununun ## u u u

GF-232

MANUAL DE INSTRUCCIONES

INSTRUCTION MANUAL

MANUEL D'UTILISATION

ESPAÑOL

INDICE

1 GENERALIDADES	(
1.1 Descripción	;
2 PRESCRIPCIONES DE SEGURIDAD	,
3 INSTALACION	9
3.1 Atimentación	Ç
3.2 Instalación y puesta en marcha	10
4 INSTRUCCIONES DE MANEJO	11
4.1 Descripción de mandos	11
4.2 Forma de utilización	15
4.2.1 Salida principal	15
4.2.2 Selección de la frecuencia	15
4.2.3 Salida de impulsos TTL	16
4.2.4 Medidor de frecuencia	16
4.2.5 Amplificador	16
4.2.6 Comparador	16
4.2.7 Control externo de frecuencia	17
4.3 Consideraciones especiales de funcionamiento	17
4.3.1 DC Offset	17
4.3.2 Utilización de la salida de impulsos	17
5 PRINCIPIO DE FUNCIONAMIENTO	19
5.1 Descripción del circuito	19
6 MANTENIMIENTO	23
6.1 Sustitución del fusibles de red	23
	23

01/97

 \Rightarrow

=

 \Rightarrow

=

 \Rightarrow

=

 \Rightarrow

=

=

=

=

\$

 \Rightarrow

=

11

=

=

\$

\$

- 1 -

GENERADOR DE FUNCIONES

GF-232

1 GENERALIDADES

1.1 Descripción

=

=

=

 \Rightarrow

=

=

=

=

=

=

=

El Generador de Funciones GF-232 es un equipo de gran versatilidad, cualidad que se desprende de sus propias características:

- Amplio margen de frecuencias: 0,2 Hz 2 MHz, que hace posible análisis incluso a muy bajas frecuencias.
- Las señales básicas de salida que genera son: Senoidal, Triangular, Cuadrada y Pulsos, entregando además impulsos positivos compatibles con circuitos TTL, con salida fija e independiente a la frecuencia de la señal principal.
- Dispone de indicador digital de frecuencia de las bandas desde 20 Hz hasta 2 MHz para una lectura más precisa de los valores generados en cada instante.
- Dispone de tres funciones auxiliares:
 - Frecuencímetro hasta 10 MHz
 - Amplificador de potencia hasta 4 MHz y 50 Ω de impedancia de
 - Comparador con nivel variable

Estas funciones se explicarán más adelante.

Dos importantes posibilidades más completan el equipo, pues posee una entrada para control externo de la frecuencia, o su modulación y un control para añadir a la señal una tensión continua de la polaridad deseada.

Debe hacerse mención de la simplicidad de manejo que ofrece. Su diseño funcional facilita además enormemente el mantenimiento.

GF-232

01/97

- 3 -

1.2 Especificaciones

Margen de frecuencias Control de frecuencia Mando de variación continua

Indicador de frecuencia Precisión Resolución Tiempo entre lecturas Control externo por tensión (VCO/FM)

SALIDA 50 Ω Señales de salida

> Control de simetría Amplitud de salida

Impedancia de salida Control de amplitud Continuamente variable

Atenuador Offset DC

Tensión de sallda sin recortar

Respuesta de amplitud

Distorsión

Triangular Cuadrada

Amplitud Slmetría

SALIDA TTL

01/97

Tlempo de subida

0,2 Hz a 2 MHz en 7 décadas

Relación 10:1

Precisión ± 5% Digital (20 Hz a 2 MHz) ± 1 dígito 0,1 Hz a 1 kHz 250 ms Tensión de control 10 V Para una variación 10:1 Variación lineal Impedancia de entrada 15 k Ω

Senoidal, triangular y cuadrada, pulsos positivos, negativos, simetría variable. Seleccionables. 10:1 en ambos sentidos continuamente variable. 20 Vpp (circuito abierto) 10 Vpp (50 Ω) 50 Ω

> 30 dB 20 dB Continuamente variable ± 10 V (circuito abierto) \pm 5 V (50 Ω) ± 10 V (circuito abierto) $V_{\text{effset}} + V_p = \pm 10 \text{ V máx.}$

-1 dB a la salida nominal (50 Ω) Ref. 10 kHz < 0,6 % a la salida nominal (hasta 100 kHz, 50 Ω) Linealidad < 1% Tiempo de subida < 80 ns Típico 50 ns

> 3 V (circuito abierto) Independiente de la salida principal Continuamente variable < 25 ns

GF-232

æ

d

4

世

士

=

4

d

- 4 -

FRECUENCÍMETRO EXTERIOR

Frecuencia máxima Resolución Sensibilidad Impedancia de entrada

100 Hz 60 mV (5 MHz) 100 kΩ

10 MHz

AMPLIFICATION

=

 \Rightarrow

=

\$

=

##

##

=

Ancho de banda Impedancia de entrada Impedancia de salida Máxima amplitud de salida

4 MHz 100 kΩ 50 Ω 10 Vpp (50 Ω)

Ganancia

32 dB [40] (circuito abierto)

COMPARADOR DE NIVEL Impedancia de entrada

Amplitud de salida Control de disparo $100~k\Omega$ Compatible TTL ± 150 mV variable

ALIMENTACION

Tensión de red

AC 110-125-220-230-240 V \pm 10%, 50-60 Hz.

Consumo

CONDICIONES AMBIENTALES DE FUNCIONAMIENTO

Margen de temperaturas Humedad relativa máxima Hasta 2000 m De 5 a 40 ° C

80 % (Hasta 31ºC), decreciendo linealmente hasta el 50% a 40º C

CARACTERÍSTICAS MECÁNICAS

Dimensiones Peso

A. 212 x Al. 102 x Pr. 241 mm

1,7 Kg.

ACCESORIOS INCLUIDOS

Descripción

90901105 Cable de red CA-05

0 FS0040 Fusible 5x20mm, 250 V, F, 500 mA

01/97

- 5 -

- * Utilizar el equipo solamente en sistemas con el negativo de medida conectado al potencial de tierra.
- Este es un equipo de clase I, por razones de seguridad debe conectarse a líneas de suministro con la correspondiente toma de tierra.
- * Este equipo puede ser utilizado en Instalaciones con Categoría de Sobretensión II y Ambientes con Grado de Polución 1.
- Al emplear cualquiera de los siguientes accesorios debe hacerse sólo con los tipos especificados a fin de preservar la seguridad.

Cable de red

- * Tener siempre en cuenta los **márgenes especificados** tanto para la alimentación como para la medida.
- Recuerde que las tensiones superiores a 60 V DC o 30 V AC rms son potencialmente peligrosas.
- * Observar en todo momento las condiciones ambientales máximas específicadas para el aparato.
- El operador sólo está autorizado a intervenir en:

Sustitución del fusible de red, que deberá ser del tipo y valor indicados.

En el apartado de Mantenimiento se dan instrucciones específicas para estas intervenciones.

Cualquier otro cambio en el equipo deberá ser efectuado exclusivamente por personal especializado.

- * El negativo de medida se haila al potencial de tierra.
- * No obstruir el sistema de ventilación del equipo.
- * Seguir estrictamente las **recomendaciones de ilmpleza** que se describen en el apartado Mantenimiento.

01/97

 \Rightarrow

 \Rightarrow

=

=

=

=

=

#

-7-

Símbolos relacionados con la seguridad

==== CORRIENTE CONTINUA CORRIENTE ALTERNA ALTERNA Y CONTINUA TERMINAL DE TIERRA TERMINAL DE PROTECCION TERMINAL A CARCASA EQUIPOTENCIALIDAD MARCHA PARO DOBLE AISLAMIENTO (Protección CLASE II) PRECAUCION (Riesgo de choque eléctrico) PRECAUCION VER MANUAL FUSIBLE

GF-232

01/97

- 8 -

14 SEPTEM

=

4

=

士

#

=

=

=

d

#

二

¢

3 INSTALACION

###

=

3.1 Allmentación

Este equipo está preparado para ser alimentado con tensiones de red de 110-125-220 o 230/240 V AC 50-60 Hz. La tensión de red puede seleccionarse desde el panel posterior.

Para extraer la tapita portafusibles levantar por este punto mediante un pequeño destomillador.

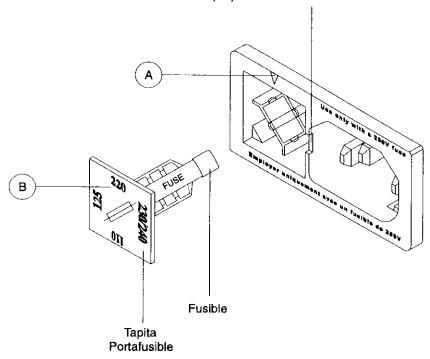


Figura 1.- Cambio de la tensión de red.

- 1.- Extraer la tapita portafusibles.
- 2.- Situar el fusible adecuado a la tensión de red deseada.
- Insertar la tapita portafusibles, haciendo coincidir el índice [A] con la indicación de la tensión de red deseada [B].

01/97

- 9 -

PRECAUCION:

EL APARATO VIENE PREPARADO DE FABRICA PARA 220 V.

ANTES DE CONECTAR EL EQUIPO, SITUAR CORRECTAMENTE EL SELECTOR DE TENSION Y ASEGURARSE DE QUE EL VALOR DEL FUSIBLE ESTA DE ACUERDO CON LA TENSION DE RED.

EL FUSIBLE DEBE SER DEL TIPO: 5 x 20 mm., 250 V, RAPIDO (F). y:

0,25 A PARA 220, 230 y 240 V. 0,50 A PARA 110 y 125 V.

EL INCUMPLIMIENTO DE ESTAS INSTRUCCIONES PODRIA DAÑAR EL EQUIPO.

3.2 Instalación y puesta en marcha

El equipo está preparado para su utilización como equipo de sobremesa.

Una vez efectuada la correcta selección de la tensión de red a utilizar, puede procederse a la conexión del aparato a la red de alimentación y a la puesta en marcha del equipo por accionamiento del interruptor correspondiente.

Para comodidad de uso se incluye un pie abatible para elevar la parte frontal del aparato.

=

=

=

4

二

4

4

4

=

4 INSTRUCCIONES DE MANEJO

4.1 Descripción de mandos

Panel frontal

 \Rightarrow

 \Rightarrow

=

=

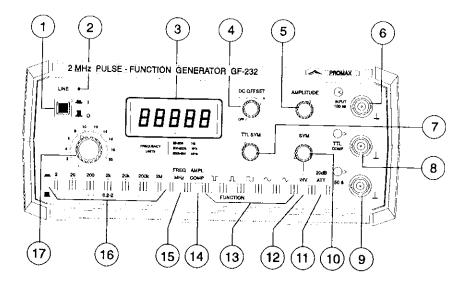


Figura 2.- Panel frontal.

- [1] LINE. Interruptor de red.
 En la posición ON, se alimenta al equipo con la tensión de red.
- [2] LED. Indicador de marcha. Indica que el equipo está en funcionamiento.
- [3] Indicador de frecuencia.

 La presentación se realiza mediante 5 dígitos LCD, que indican la frecuencia de salida del generador o la de la señal de entrada [6] cuando elegimos la función frecuencimetro.
- [4] DC OFFSET. Control de offset de tensión. La posición normal de trabajo es la posición "cerrado" (todo a la izquierda). Girando el mando se obtiene un control progresivo de la tensión continua a la que se superpone la señal de salida. Esta tensión pasará de + 10 V a -10 V (en circuito abierto) pasando por 0 V o posición normal de trabajo.

01/97

- 11 -

[5] AMPLITUDE. Control de amplitud. Mando continuamente variable para regular la amplitud de salida. [6] INPUT Entrada para la medida de frecuencia y destinada también a entrada en las funciones amplificador y comparador. [7] TTL SYM. Control de simetría TTL. Este control permite modificar la simetría de la señal impulsional que se = obtiene en la salida TTL [8]. = [8] Salida de impulsos con niveles TTL a la misma frecuencia de la señal de la salida [9]. Permite la carga de más de 10 entradas TTL. **=** [9] Salida de la señal seleccionada por [13] con una impedancia interna de 50 Ω. [10] SYM. Control de simetría. \rightleftharpoons Con este control su permite aumentar el tiempo correspondiente a un semiperíodo de la salida principal [9] para obtener de esta forma, **=** funciones de salida asimétricas. La frecuencia de salida se ve por ello modificada. = Es posible elegir selectivamente la actuación sobre cualquiera de los dos semiperíodos. = [11] 20 dB ATT. Atenuador de 20 dB. d Manteniendo la impedancia de salida, atenúa 20 dB el nivel de salida elegido mediante el control [5]. d [12] INV Selector. Permite elegir el semiperíodo de la señal de salida en el que actúa el **=** control de simetría [10]. ¢ FUNCTION. Selectores de la función de salida. Pulsando los selectores, se puede elegir para la salida [9] entre las **=** formas de onda cuadrada, triangular, senoidal, y pulsos positivos o negativos. ¢

- 12 -

GF-232

01/97

[14] AMPL/COMP.

Permite utilizar el equipo como amplificador o como comparador de nivel, de manera simultánea.

Para trabajar como amplificador hemos de utilizar el conector [6] como entrada de señal y el conector [9] como salida. Notar que el control de amplitud [5] y el atenuador [11] son en todo momento operativos.

Para trabajar como comparador de nivel, hemos de utilizar el conector [6] de la forma anteriormente descrita y la salida a nivel lógico será la salida TTL [8]. El control TTL SYM [7], nos permite modificar el nivel de comparación.

[15] **FREQ MHZ**.

=

=

=

=

=

\$

=

=

=

Activando esta función auxiliar, el generador pasa a funcionar como frecuencímetro con un rango de utilización hasta 10 MHz. En este caso el conector [6] se utiliza como entrada de señal y el display [3] como elemento de presentación con una resolución de hasta 5 dígitos.

[16] FREQ. Selectores de Banda.

Para elegir el margen o década de frecuencia (Hz) que gobernará el control [17]. Cada selector tiene dos acciones en su recorrido de pulsación, por éste orden:

- Desactuar cualquier otra tecla del conjunto.
- Fijarse en la posición pulsada.

Al pulsar parcialmente cualquier tecla no pulsada y ceder en la acción, quedarán todas ellas desactuadas. En la posición "todas desactuadas" la banda de frecuencia elegida será de 0,2 Hz a 2 Hz.

NOTA

Se deberá trabajar en una zona en la que Vp (tensión de pico de la señal de salida) más la tensión de offset (desplazamiento), no supere \pm 10 V en circuito abierto (\pm 5 V sobre 600 Ω) para que no se produzca recorte en la señal de salida.

[17] Control de frecuencia.

Control continuamente variable de la frecuencia en la banda elegida por el mando [16].

01/97

- 13 -

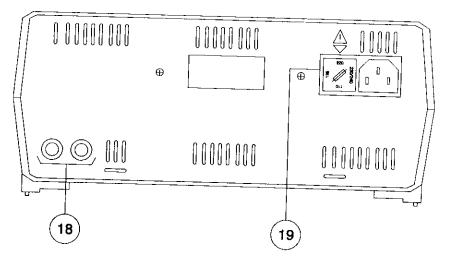


Figura 3.- Panel posterior.

[18] VCO. Entrada de control de frecuencia por tensión.

Permite controlar la frecuencia de salida o bien modularla en FM, en el margen de la década seleccionada en [16]. Para poder producir una variación 10:1 es necesario aplicar 10 V aproximadamente. Tensiones de control negativas producen el aumento de la frecuencia y viceversa.

[19] Conector de red, selector de red y portafusible. Deberá ubicarse en él el cordón de red incluido en los accesorios del aparato DESPUÉS DE SELECCIONAR LA TENSIÓN.

Selector de tensión y portafusible: Según la posición del clip portafusible, la tensión de alimentación queda seleccionada a 110, 125, 220 ó 230 / 240 V (Véase fig. 1).

01/97

- 14 -

GF-232

_

=

⇌

랟

¢

¢

¢

¢

¢

4.2 Forma de utilización

4.2.1 Sallda principal

Seleccionar la función deseada mediante los controles [13] del panel frontal.

Selectionar la frecuencia mediante los controles [16], [17] y [3].

Seleccionar por medio de un osciloscopio o equipo adecuado la amplitud de salida que se desee, para niveles bajos de señal podrá ser necesaria la utilización del control continuo y del atenuador.

Caso de ser preciso superponer una tensión continua a la señal, efectuarlo con el control DC OFFSET [4] del panel frontal, en este caso debemos tener en cuenta que el osciloscopio utilizado para la medida tenga la entrada vertical acoplada en continua (DC).

Si la frecuencia a observar está por debajo de 1 Hz aproximadamente, será conveniente utilizar un equipo que permita observación de fenómenos lentos.

Recordar que la transmisión óptima de la señal, en el cable conectado a la salida, se produce al utilizar cable de 50 Ω de impedancia característica, con una carga terminal de adaptación.

4.2.2 Selección de la frecuencia

En las bandas que cubren desde 20 Hz a 2 MHz, está activo el indicador digital de frecuencia [3], que permite la selección rápida y precisa de la frecuencia deseada mediante el control de frecuencia [17].

En las bandas que están por debajo de 20 Hz: de 0,2 Hz a 2 Hz y de 2 Hz a 20 Hz, el medidor de frecuencia se desactivará pudiéndose determinar la frecuencia directamente en las inscripciones del panel asociadas al control de frecuencias [17].

Al utilizar el control de simetría variable [10], la frecuencia baja en función de la asimetría que se desea. En las bandas que cubren de 200 Hz a 2 MHz, la lectura de frecuencia en el display [3] sigue siendo válida mientras que en la banda de 20 Hz a 200 Hz se desactiva el display al activar el control SYM [10] debido a que la frecuencia se podrá reducir por debajo de 20 Hz. En el caso de ser necesario conocer la frecuencia de una señal asimétrica en las tres bandas de más baja frecuencia, será preciso utilizar un medidor externo.

4.2.3 Salida de Impulsos TTL

Si se desea utilizar la salida de impulsos, conectar directamente el circuito bajo prueba a la salida [8].

d

d

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

c

c

¢

La selección de frecuencia se efectúa del mismo modo que para la salida principal. Es posible, mediante el control [7], variar la simetría de la señal sin modificar por ello la frecuencia de repetición.

4.2.4 Medidor de frecuencia

El **GF-232** puede ser utilizado, como hemos dicho anteriormente, como frecuencímetro con un rango de utilización que abarca hasta 10 MHz mediante el selector FREQ kHz [15]. El equipo cesa en su funcionamiento como generador y presenta la lectura de la frecuencia en el display (en kHz), con una resolución del frecuencímetro de 100 Hz. En el caso de sobrepasarse la capacidad máxima del display (99999), se activan 2 puntos (:) después de la cifra más significativa.

4.2.5 Amplificador

Mediante el selector AMPL/COMP [14] el equipo se convierte en un amplificador que cubre la banda comprendida entre DC y 4 MHz, con una ganancia de 32 dB en circuito abierto. Admite ser cargado con líneas de 50 Ω y entrega hasta 10 Vpp sobre esta carga.

Es posible utilizar el control de variación continua de amplitud AMPLITUDE [5] y añadir un offset DC mediante el control OFFSET DC [4]. En este modo de trabajo, la excursión máxima de la salida es de ± 10 V de pico, que incluye las componentes AC y DC.

El atenuador de 20 dB continúa siendo operativo.

4,2.6 Comparador

Mediante el selector AMPL/COMP [14] el **GF-232** realiza la función de comparador con nivel variable. La entrada de señal se realiza a través del conector [6], mientras que la salida a niveles TTL se obtiene mediante el conector [8].

El cambio de estado se efectúa mediante una histéresis a la entrada, aproximada de 70 mV, mientras que el punto de disparo puede variarse mediante el control TTL SYM [7] entre ±150 mV. Las características de la salida de impulsos TTL también son aplicables en la función comparador de umbral.

Esta función será de aplicación en los casos en que se desee conformar una señal digital o bien compatibilizar una señal analógica, con dos niveles de interés, con un sistema digital.

01/97 - 16 - GF-232

4.2.7 Control externo de frecuencia

Para utilizar el control exterior de frecuencia basta la conexión de la tensión adecuada a los bornes del panel posterior.

Caso de precisar barridos de frecuencia de una década completa; seleccionar ésta por el control [16] del panel frontal y utilizar como señal de control una rampa de 10 V que puede entregar un equipo similar.

Tener en cuenta que el sentido de variación de la frecuencia es inverso al de la tensión que lo produce.

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

=

33

A

PRECAUCIONES:

No conectar tensión en la salida del equipo. Utilizar tensiones de control VCO exentas de ruido y zumbido.

4.3 Consideraciones especiales de funcionamiento

4.3.1 DC Offset

Observar que al utilizar el offset de tensión, la señal no podrá sobrepasar un valor de pico de 10 V en circuito abierto (± 5 V sobre 50 Ω) para que no se produzca recorte.

4.3.2 Utilización de la salida de impulsos

Cuando se emplee esta salida es recomendable que el cable de interconexión esté cargado en el otro extremo por su impedancia característica, a fin de evitar sobreoscilaciones "ringing" debidas a las reflexiones en el cable.

El impulso de esta salida se halla en torno al pico positivo de la señal triangular, o flanco de subida de la señal cuadrada. Nótese que el control de simetría de la salida principal, actuará sobre la salida de impulsos TTL bajando la frecuencia de repetición de dichos impulsos.

01/97

- 17 -

5 PRINCIPIO DE FUNCIONAMIENTO

5.1 Descripción del circulto

La estructura general del equipo puede verse en diagrama de bloques (figura 4).

La señal básica generada en el **GF-232** es la Triangular. Esta es la que aparece en bornes de una capacidad C al cargarla a una corriente constante (rampa creciente) y descargarla de igual modo (rampa decreciente).

Al efectuarse este proceso, la frecuencia se podrá variar de dos formas distintas, bien variando la magnitud de las corrientes de carga y descarga o bien variando la capacidad a cargar y descargar.

Las variaciones de frecuencia en el GF-232 se efectúan:

- Por control continuo (una década); control [17] del panel frontal, por variación de las corrientes de carga y descarga gobernando IC1B con una tensión. A esta tensión se le puede sumar otra exterior (VCO) a través de la entrada VCO [18].
- Por salto de décadas; se realiza de forma mixta, cambio de las corrientes constantes de carga y descarga o por cambio de la capacidad C2 a C6.
- La variación de simetría de la señal principal se obtiene por reducción de la corriente de carga o descarga de C, según convenga.

Generación de la señal cuadrada

Previamente amplificada la señal triangular, ésta hace actuar a un circuito disparador al llegar la tensión en bornes de la capacidad C a unos valores determinados.

La señal cuadrada así obtenida tiene además la misión de gobierno de los dos generadores de corriente constante, bien el de carga bien el de descarga.

Este control de inhibición de uno u otro generador se efectúa con un circuito puerta. El amplificador previo de la señal Triangular lo constituye IC3 a fin de no influir sobre las corrientes de carga y descarga de C.

Un circuito a la salida del conversor de cuadradas permite obtener a voluntad la señal con excursión sólo positiva o ambas para obtener de este modo las dos funciones: impulso positivo o negativo.

 \Rightarrow

Generación de la señal senoldal

El método utilizado es de conformación de la señal triangular por tramos, aprovechando el codo de la característica V/I de los diodos D26 a D41.

Amplificador de salida

Una vez generadas las tres funciones, pasan al selector y posteriormente al amplificador de salida que incluye los controles de amplitud, adición de la tensión de offset y atenuador de salida.

Frecuencimetro

Un circuito ASIC conforma el frecuencímetro completo, que incluye la base de tiempos, circuitos de control, contadores y drivers de display LCD. A la entrada de éste, la señal pasa por la circuitería multiplicadora y divisora de frecuencia, que permite escalar cada banda a la resolución conveniente.

Amplificador exterior

En las funciones frecuencímetro, amplificador y comparador, el selector SF conecta el amplificador de alta impedancia a la entrada exterior para ser utilizado como preamplificador de entrada en estas funciones.

El conversor TTL, actúa como salida de la función comparador.

Generador de impulsos TTL

Los impulsos positivos se logran al pasar la señal triangular por el circuito disparador formado por IC7 en montaje Schmitt trigger. La asimetría de la señal de salida se consigue mediante el adecuado nivel de comparación en la entrada.

GF-232

C

¢

¢

¢

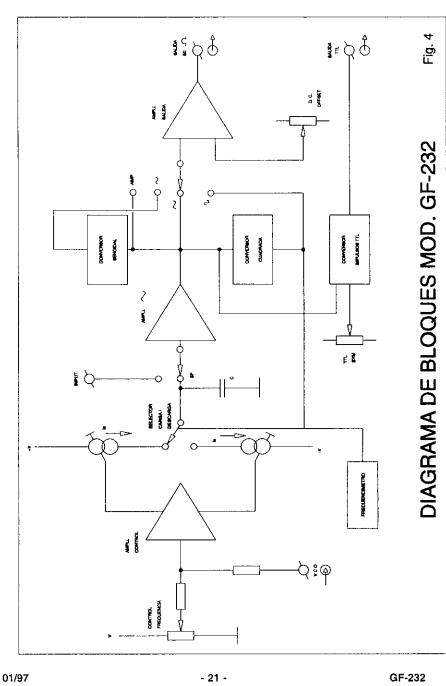
¢

c

¢

¢

¢


¢

¢

¢

¢

¢

2 2 2

unnnnnnnn

6.1 Sustitución del fusibles de red

El portafusibles está situado en la propia base de red (ver fig. 1).

Para la sustitución del fusible desconectar el cable de red.

Mediante un destornillador apropiado extraer la tapita portafusibles.

Sustituir el fusible dañado que será de:

5 x 20 mm., 250 V, RAPIDO (F) y:

0,25 A PARA 220, 230 y 240 V 0,50 A PARA 110 y 125 V

6.2 Recomendaciones de limpleza

PRECAUCION

PARA LIMPIAR LA CAJA, ASEGURARSE DE QUE EL EQUIPO ESTÁ DESCONECTADO.

PRECAUCION

NO SE USE PARA LA LIMPIEZA HIDROCARBUROS AROMÁTICOS O DISOLVENTES CLORADOS. ESTOS PRODUCTOS PUEDEN ATACAR A LOS MATERIALES UTILIZADOS EN LA CONSTRUCCIÓN DE LA CAJA.

La caja se limpiará con una ligera solución de detergente con agua y aplicada mediante un paño suave humedecido.

Secar completamente antes de volver a usar el equipo.

01/97

 \Rightarrow

 \Rightarrow

=

⇒

=

=

=

- 23 -