

Using Mathcad To
Derive Circuit Equations

and Optimize Circuit Behavior

By:
James C. (Jim) Bach

EE Analysis Engineer & Mathcad Instructor
Electrical Design & Analysis Group

Delphi Corporation
Kokomo, IN, USA

James.C.Bach@Delphi.com

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 2 of 2 February 3, 2005

Introduction
For those of you who are not familiar with it, Mathcad (produced by Mathsoft, not to be
confused with Matlab or Mathematica) is a general purpose mathematical analysis tool with
WYSIWYG formula entry and which can operate in both numeric and symbolic modes;
symbolic math is performed by the underlying Maple engine, common to many of these
“Math Processor” applications. Equations are entered in a natural, ‘text book’ format
wherein integrals look like integrals, and summations look like summations; FORTRAN-like
coding syntaxes need not apply. It is a Swiss-army knife of mathematical functions,
operators, GUI widgets, and graph types. It comprehends (and automatically converts
between) units, meaning that when you divide a “Volts” quantity by an “Amps” quantity,
your result is automatically an “Ohms” quantity. From the EE’s point of view, Mathcad is a
tool that can be used to derive system- or circuit-level equations (remember “solving N
equations with N unknowns”?), optimize circuit component values, perform worst-case
analysis, process large vectors (matrices) of data, perform image-processing and signal-
processing tasks, curve-fit lab-collected measurements, and even create .AVI movies
(animations of data). After some exploration and experimentation with Mathcad I can
guarantee you that you will start pushing-aside faithful old Excel. Speaking of which,
Mathcad allows you to embed Excel tables inside its documents, so that users can easily
enter data into variables, or display calculation results in tabular form; Mathcad can even
read/write data from/to Excel files in the native binary .XLS format. What could make the
transition from one tool to the other easier?

This article provides a brief tutorial on Mathcad’s “Symbolics” and “Optimization” features,
and then illustrates how to use both of them to perform a circuit design. For those of you
who might already use Mathcad some of this might be “review”; perhaps, though, you will
pick-up some new tidbits of knowledge. It is hoped that the reader will learn a faster and
easier (and less error-prone) method of deriving circuit equations and transfer functions, as
well as how to automatically determine optimal component values based on end-product
requirements. It is also hoped that this article will expose the reader to a new analytical
tool (Mathcad) that he wasn’t already aware of, and possibly open the door to many new
opportunities for performing better design and analysis tasks in a faster and more efficient
manner.

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 3 of 3 February 3, 2005

Symbolic Math In Mathcad
For the EE design engineer, one of Mathcad’s strong points is its “Symbolic Math” processor.
In its simplest form this feature allows you to convert or mutate an equation into another
form. For instance, say we take our familiar “impedance of 2 paralleled resistors” equation
and wish to rearrange the equation so we can solve for one of the resistor values (R1) if we
know the combined resistance (ZParallel) and one of the two resistor values (R2). Using the
two simplest forms of symbolic processing in Mathcad, which I call “Static Symbolics” and
“Live Symbolics”:

 Static: Using the “SymbolicsàVariableàSolve” menu operation, with R1 selected:

ZParallel
1

1
R1

1
R2

+
= has solution(s) ZParallel

R2

ZParallel− R2+
⋅

Live: Using the “Solve” operator from the “Symbolics Toolbar”: 1 Cap

ZParallel
1

1
R1

1
R2

+
= solve R1, ZParallel−

R2

ZParallel R2−
⋅→

Or how about rearranging the familiar “resonant frequency of an LC ‘Tank’ circuit”? Again,
using the simplest forms of symbolic processing in Mathcad we can easily rearrange the
equation to calculate the capacitance (CCap) needed to make a given inductor (LCoil)
resonate at a certain frequency (FRes):

 Static: Using the “SymbolicsàVariableàSolve” menu operation, with CCap
selected:

has solution(s)
FRes

1

2 π⋅ LCoil CCap⋅⋅
=

1

4 LCoil FRes
2 π2⋅⋅⋅

 Live: Using the “Solve” operator from the “Symbolics Toolbar”:

FRes
1

2 π⋅ LCoil CCap⋅⋅
= solve CCap,

1

4 LCoil FRes
2 π2⋅⋅⋅

→

How does one utilize these two simple forms of symbolics? Well, the “Static” symbolics
method uses the various operators located under the top-line pull-down menu titled
“Symbolics”. In general, you type-in an equation, select a term (variable) in the equation,
and then select the symbolic operation you wish to perform; some operations will operate
on the entire equation regardless of what is selected. For instance, creating the R1
derivation takes-place as:

 Enter the equation:

ZParallel
1

1
R1

1
R2

+
=

 Select the R1 term (with ‘blue L-shaped underline’):

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 4 of 4 February 3, 2005

 Invoke the “Solve” operator from the top-line menu:

 The result is inserted into the document:

has solution(s) ZParallel
R2

ZParallel− R2+
⋅

The “Live” symbolics method uses the various operators on the “Symbolic” toolbar. In
general, you place your insertion mark where (in your document) you want your symbolic
evaluation to take place, select the symbolic operator from the toolbar, and then fill-in the
placeholders (little black squares) with your equation and the term to be solved for. For
instance, creating the Ccap derivation takes-place as:

 Click the “Solve” icon on the toolbar:

 The “Solve” operation is dropped-in, with placeholders ready and waiting:

solve , →

 User fills-in the left-most placeholder (small square) with the original equation:

F Res
1

2 π⋅ L Coil C Cap⋅⋅
= solve , →

 User fills-in the right-most placeholder with the variable (term) to be solved-for:

F Res

1

2 π⋅ L Coil C Cap⋅⋅
= solve C Cap, →

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 5 of 5 February 3, 2005

 Mathcad automatically calculates the answer (right-side of à symbol):

FRes
1

2 π⋅ LCoil CCap⋅⋅
= solve CCap,

1

4 LCoil FRes
2 π2⋅⋅⋅

→

The more powerful “Chained Live” symbolic processor allows you to combine a set of
equations, solving for multiple variables contained in the equations; remember the not-so-
fun task of “solving N equations with N unknowns”? In addition, that symbolic result can be
assigned to a numeric function that can be used in subsequent design/analysis equations.
For example, you can write nodal equations for a circuit and have Mathcad derive symbolic
(algebraic) equations that represent the voltages at the nodes (or currents through the
elements), and then assign the equation representing the OUT node to a function that can
be used to plot the transfer function. A quick example is shown below.

Given a simple inverting amplifier using an op-amp:

Derive the nodal equations, presuming input currents are zero (ideal op-amp), but provide a
term for the input offset voltage (Vio):

Eqn1 Vio Vhi Vlo−:= Vlo Input offset voltage (∆V across + and - pins)

Eqn2a IHi 0:= IHi Eqn2b ILo 0:= ILo Input currents (are zero for idealistic case)

Eqn3a IHi
Vhi

Rbal
:=

Rbal
Current through Rbal (from "+" pin)

Eqn3b ILo
Vlo IN−

Rin

Vlo OUT−
Rfb

+:=
Rfb

Current at Vlo node (from "-' pin)

Use the symbolics processor to calculate the equation for the output voltage (and a bunch of
intermediary terms that we don’t care about):

SysRes

Eqn1

Eqn2a

Eqn2b

Eqn3a

Eqn3b















solve

OUT

Vlo

Vhi

ILo

IHi

















,
Rfb Vio⋅ Rfb IN⋅+ Rin Vio⋅+()−

Rin
Vio− 0 0 0







→:=SysRes

Eqn1

Eqn2a

Eqn2b

Eqn3a

Eqn3b















solve

OUT

Vlo

Vhi

ILo

IHi

















,
Rfb Vio⋅ Rfb IN⋅+ Rin Vio⋅+()−

Rin
Vio− 0 0 0







→:=

Strip-out the one answer we care about (OUT), and collect on the Vio term to make it
‘neater looking’:

Out SysRes
0〈 〉()

0 collect Vio,
Rfb Rin+()−

Rin
Vio⋅ Rfb

IN

Rin
⋅−→:=Out SysRes

0〈 〉()
0 collect Vio,

Rfb Rin+()−
Rin

Vio⋅ Rfb
IN

Rin
⋅−→:=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 6 of 6 February 3, 2005

Then assign the symbolic result to a function (VOut) that can be evaluated numerically:

VOut IN Rfb, Rin, Vio,() Out
Rfb Rin+()−

Rin
Vio⋅ Rfb

IN

Rin
⋅−→:=

The above is an example of what I call “Chained Live Symbolics”, because the equations are
tied-together or “chained” by virtue of assigning the symbolic equations (right-side of :=
operator) to variables (left-side of := operator), which are then used in subsequent
symbolic operations. For instance, the 5 basic circuit equations, assigned into variables
Eqn1, Eqn2a, Eqn2b, Eqn3a, and Eqn3b, are chained to (used by) the ‘solve’ operation,
whose results are assigned into the variable SysRes (System Results), which is then
chained to (used by) the equation that pulls-out the OUT answer (and collects terms), and
assigns it to the variable Out, which is chained to (used by) the function declaration for
VOut. Notice that our final result does not contain a term for Rbal; because we had defined
our op-amp’s input currents to be zero, the voltage (Vhi) induced into Rbal from the “+”
input’s current is zero, thus the Rbal term drops-out of our transfer function.

The ‘beauty’ of this system is that if you find an error in one of your fundamental equations,
or wish to change one or more equations because you made a topological change in the
circuit, all of the changes automatically ripple-down to the bottom-line answer. For
instance, the example above ignored the op-amp’s input offset and bias currents. If we
later decided to add terms (Io and Ib, respectively) to account for these parasitics, all we
would need to do is modify equations Eqn2a and Eqn2b as follows:

Eqn2a IHi Ib
1

2
Io⋅+:= Io Eqn2b ILo Ib

1

2
Io⋅−:= Io

And then the new System Results pops-out automatically (and in a much more ‘long and
messy’ form):

SysRes

Eqn1

Eqn2a

Eqn2b

Eqn3a

Eqn3b















solve

OUT

Vlo

Vhi

ILo

IHi















, 1−
2

2 Rin Rfb Ib⋅⋅⋅ Rin Rfb Io⋅⋅− 2 Rfb Vio⋅⋅ 2 Rfb Rbal Ib⋅⋅⋅− Rfb Rbal Io⋅⋅−+ 2 Rfb IN⋅⋅+ 2 Rin Vio⋅⋅ 2 Rin Rbal Ib⋅⋅⋅− Rin Rbal Io⋅⋅−+
Rin

⋅ Vio− Rbal Ib⋅+ 1

2
Rbal Io⋅⋅+ Rbal Ib⋅ 1

2
Rbal Io⋅⋅+ Ib 1

2
Io⋅− Ib 1

2
Io⋅+





→:=SysRes

Eqn1

Eqn2a

Eqn2b

Eqn3a

Eqn3b















solve

OUT

Vlo

Vhi

ILo

IHi















, 1−
2

2 Rin Rfb Ib⋅⋅⋅ Rin Rfb Io⋅⋅− 2 Rfb Vio⋅⋅ 2 Rfb Rbal Ib⋅⋅⋅− Rfb Rbal Io⋅⋅−+ 2 Rfb IN⋅⋅+ 2 Rin Vio⋅⋅ 2 Rin Rbal Ib⋅⋅⋅− Rin Rbal Io⋅⋅−+
Rin

⋅ Vio− Rbal Ib⋅+ 1

2
Rbal Io⋅⋅+ Rbal Ib⋅ 1

2
Rbal Io⋅⋅+ Ib 1

2
Io⋅− Ib 1

2
Io⋅+





→:=

After collecting on terms Vio, Ib, and Io the VOut function declaration changes to:

 V Out IN Rfb , Rin , Rbal , Vio , Ib , Io , ()

Rfb IN
Rin ⋅

1
2

Rin Rfb ⋅ Rin Rbal ⋅ + Rfb Rbal ⋅ +
Rin Io ⋅ ⋅ −

2 Rin
1 2 − Rin Rfb ⋅ ⋅ 2 Rin Rbal ⋅ ⋅ + 2 Rfb Rbal ⋅ ⋅ + Ib ⋅ ⋅ +

Out 1
2

2 − Rfb ⋅ 2 Rin ⋅ −
Rin Vio ⋅ ⋅ + → :=

All we had to do is tidy-up VOut’s argument list by adding-in the two new terms, Io and Ib.
It was optional to collect on the newly-added terms in order to make the equation look
prettier, however, notice how it lends itself to allowing the designer to directly observe the
contributions of the op-amp’s parasitics in the overall transfer function. In fact, you can

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 7 of 7 February 3, 2005

even use Mathcad’s “derivative” operator to directly find the individual contributions of
these error terms to the transfer function:

Vio
Out

d

d

1−
2

2 Rfb⋅ 2 Rin⋅+
Rin

⋅→

Ib
Out

d

d

1−
2

2 Rin Rfb⋅⋅ 2 Rin Rbal⋅⋅− 2 Rfb Rbal⋅⋅−
Rin

⋅→

Io
Out

d

d

1−
2

Rin− Rfb⋅ Rin Rbal⋅− Rfb Rbal⋅−
Rin

⋅→

And, of course, the “gain” of the circuit is simply the derivative of the transfer function with
respect to the input signal “IN”:

IN
Out

d

d

Rfb−
Rin

→

Notice that our final result (OUT) now contains terms involving Rbal; because we have
included terms (Ib and Io) which generate current (IHi) on the “+” input, the voltage (Vhi)
induced across Rbal is no longer zero, thus Rbal is needed in the transfer function.

So now we have a function that can calculate the output voltage (OUT) given all of the
circuit values and device parasitics. Using this function we can (amongst other things) plot
a graph showing the circuit’s transfer function. Say we’ve designed this circuit to have a
gain of –10, and we are using an op-amp with fairly large input currents:

Rfb 10kΩ:= Rin 1kΩ:= Rbal 1kΩ:= V io 5mV:= Ib 10µA:= Io 0.1µA:=

0 0.01 0.02 0.03 0.04
0.6

0.5

0.4

0.3

0.2

0.1

0

Ib positive
Ib negative
Ideal Behavior

Transfer Function (Av=-10)

Input (Volts)

O
ut

pu
t
(V

ol
ts

)

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 8 of 8 February 3, 2005

Optimization in Mathcad
Another one of Mathcad's strong points is that it has built-in "optimization" capability, which
can be used to adjust any number of system variables until a set of "goal" conditions have
been met, or met with minimal error. This allows the engineer to make some initial guesses
for component values, and then have Mathcad determine what the optimal values are in
order to meet the design constraints (say, to reduce the error of a current-sense amplifier,
obtain a desired frequency response in a multi-stage filter network, etc.). The designer can
constrain component values to particular ranges, to prevent the optimizer from finding
problematically “too small” or “too large” of values. The designer can also create his own
“Error” function, which can be used to control the weighting of trade-offs in the optimization
process.

First of all, you must know if the system you are trying to optimize has achievable goals
(constraints), or if you have some mutually exclusive goals that will make an exact solution
impossible. Mathcad provides two constructs for optimization:

 Given…Find Finds an exact solution (makes all constraints come true)

 Given…Minerr Finds the solution with minimal error for all constraints

If you know your system DOES have an exact solution, then use the Given…Find
construct. Otherwise use the Given…Minerr construct, which will provide a solution
whether or not an exact solution exists. The following examples demonstrate how each of
these constructs work.

The first example of optimization illustrates use of the Given…Find construct to determine
the optimal values of two resistors in a divider such that both the target output voltage and
target Thevenin resistance are obtained. First we need to create functions for calculating
the output voltage (VOut) and the Thevenin resistance (ZOut), specify the supply voltage
(Vs), and establish the constraints on the system (GoalV and GoalZ):

VOut VS R1, R2,() VS
R2

R1 R2+
⋅:= Output Voltage

 Functions describing
 circuit behavior to be
 optimized
Output ImpedanceZOut R1 R2,() 1

1
R1

1
R2

+
:=

VSupply 5V:= Power Supply Voltage

GoalV 1.5V:= Voltage
 Optimization Goals
ImpedanceGoalZ 10kΩ:=

Initial guesses for resistors

Next we make our “guesses” for the values of R1 and R2:

R1 2GoalZ:= R2 R1:=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 9 of 9 February 3, 2005

Then we let Mathcad perform the optimization, telling it to force VOut to match GoalV and to
force ZOut to match GoalZ:

Given

VOut VSupply R1, R2,() GoalV= ZOut R1 R2,() GoalZ=

R1_Found

R2_Found









Find R1 R2,():=

It is important to note that the “=” signs used to define the constraints of the Given…Find
block are the “Boolean Equals” sign, obtained by clicking the icon on the “Boolean Toolbar”
(or typing <ctrl>=); this is NOT the standard “give me the answer” equals sign obtained by
typing “=” on the keyboard.

The results that Mathcad yields are:

R1_Found 33.3333kΩ=

R2_Found 14.2857kΩ=

Calling our original functions with the newly found resistor values we can check compliance
with the initial design constraints:

VOut VSupply R1_Found, R2_Found,() 1.5000=

ZOut R1_Found R2_Found,() 10.0000kΩ=

Indeed, we see that our goals have been met.

We can generalize this optimization so that no matter how many different VOut and ZOut
combinations we need to create, we don’t have to recreate the Given…Find block multiple
times. In this example we’ll always default the resistors to 10kΩ, and we’ll replace the left-
side of the := Find equation with the name of a function and a list of input arguments:

R1 10kΩ:= R2 10kΩ:=

Given

VOut VS R1, R2,() TV= ZOut R1 R2,() TZ=

Optimize_Rs1 VS TV, TZ,() Find R1 R2,():=

What this allows us to do is pass-in any set of target VOut and ZOut, and get-back a set of R1
and R2. For example:

Optimize_Rs1 5V 3V, 1kΩ,() 1666.6655

2499.9986







Ω=

Optimize_Rs1 12V 3V, 1kΩ,() 4000.0009

1333.3333







Ω=

Optimize_Rs1 12V 5V, 10kΩ,() 24.0000

17.1429







kΩ=

The second example of optimization illustrates use of the Given…Minerr construct to
determine the optimal values of three resistors in a divider such that both of the target
output voltages are obtained. The list of constraints includes an inane requirement for the
top and bottom resistor values to be the same value; this precludes the Given…Find
construct from succeeding.

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 10 of 10 February 3, 2005

First we need to create functions for calculating the output voltages (VOut1 and VOut2),
specify the supply voltage (Vs), and establish the constraints on the system (GoalV1 and
GoalV2):

VOut1 VS R1, R2, R3,() VS
R2 R3+

R1 R2+ R3+
⋅:= Top "Tap"

 Functions describing
 circuit behavior to be
 optimized

Bottom "Tap"
VOut2 VS R1, R2, R3,() VS

R3

R1 R2+ R3+
⋅:=

VSupply 5V:= Power Supply Voltage

GoalV 1 4V:= Top "Tap"
 Optimization Goals
Bottm "Tap"GoalV 2 1.5V:=

Next we make our “guesses” for the values of R1, R2 and R3:

R1 1kΩ:= R2 1kΩ:= R3 1kΩ:=

Then we let Mathcad perform the optimization, telling it to force VOut1 to match GoalV1, to
force VOut2 to match GoalV2, and to force R1 to match R3 (i.e. same-valued resistors):

Given

VOut1 VSupply R1, R2, R3,() GoalV1=

VOut2 VSupply R1, R2, R3,() GoalV2=

R1 R3=

R1_Found

R2_Found

R3_Found









Minerr R1 R2, R3,():=

Again, please note that the three constraints in the Given…Minerr block utilize the
“Boolean Equals” sign.

The results that Mathcad yields shows us that it complied with the constraint of R1 = R3:

R1_Found 0.2500kΩ= R2_Found 0.5000kΩ= R3_Found 0.2500kΩ=

However, calling our original functions with the newly found resistor values shows us that
the voltage constraints were not quite met:

VOut1 VSupply R1_Found, R2_Found, R3_Found,() 3.7500V= GoalV1 4.0000V=

VOut2 VSupply R1_Found, R2_Found, R3_Found,() 1.2500V= GoalV2 1.5000V=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 11 of 11 February 3, 2005

Because the desired voltages across R1 and R3 are different (1V –vs- 1.5V) there is NO way
same-valued resistors can be used and provide the desired output voltages. Notice that
both of the output voltages missed their targets by the same amount; VOut1 is 0.25V lower
than desired and VOut2 is 0.25V higher than desired. The optimizer did its best with
conflicting constraints; it “split the difference”.

The key to getting even this close to an optimized solution is the use of the
“Given…Minerr” construct. If we attempted this optimization using the “Given…Find”
construct, we’d find-out the hard way that we had an impossible situation:

Given

VOut1 VSupply R1, R2, R3,() GoalV1=

VOut2 VSupply R1, R2, R3,() GoalV2=

R1 R3=

R1_Found

R2_Found

R3_Found









Find R1 R2, R3,():=

R1_Found

R2_Found

R3_Found









Find R1 R2, R3,():=

Whenever you attempt to perform an optimization using the “Given…Find” construct, and
you get this sort of error, try changing “Find” to “Minerr” and see what results you get;
perhaps there really was NOT an exact solution. In general the “Given…Minerr” construct
is the sure-bet; it will give an answer whether or not there is an exact solution.

Notice in the example below that if we unshackle the optimizer (remove R1=R3 constraint),
then the “Given…Find” has no problem in finding an exact solution:

R1_Found 0.5950kΩ= R2_Found 1.4876kΩ= R3_Found 0.8926kΩ=

VOut1 VSupply R1_Found, R2_Found, R3_Found,() 4.0000V= GoalV1 4.0000V=

VOut2 VSupply R1_Found, R2_Found, R3_Found,() 1.5000V= GoalV2 1.5000V=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 12 of 12 February 3, 2005

Putting it all together
Now that we know how to use the “Symbolics” processor to derive circuit equations and how
to use the “Optimizer” to obtain optimal component values to meet a set of goals (targets),
let’s put the two techniques together to synthesize a useful design. The example provided
here is a real-world circuit, a microphone preamplifier with bandpass filtering. The circuit
topology is:

VoutVbias

Vin

vee

vcc

U1

Vcc

Rbias1

Rbias2

Vcc

Op-Amp Parameters:
 Vio = Input Offset Voltage
 Iio = Input Offset Current
 Iib = Input Bias Current

Rout
OUT

IN
Input from

Lo-Z Source

Output to
Hi-Z Source

Optional Low-Pass Filter
(extra hi-freqy roll-off)

Low-Pass
Filtering

High-Pass
FilteringCin

Cout

Rin

Cfb

Rfb

The heart of this circuit topology is op-amp (U1), arranged in an inverting amplifier
configuration. This analysis shall take into account the input parasitics of the op-amp,
namely the input offset voltage (Vio), the input offset current (Iio), and the input bias
current (Iib). Because this design uses a single-supply op-amp, the non-inverting (“+”)
input of the op-amp is held at a pseudo-ground voltage of mid-supply, created by a simple
resistor divider network consisting of Rbias1 and Rbias2. Part of the optimization process
will be to choose divider resistor values that minimize output offset (i.e. shift from the
desired mid-supply value).

The frequency-selectivity of the circuit is controlled by the RC elements in both the input
and feedback legs. Input resistor Rin and feedback capacitor Cfb form a low-pass "Pole",
while input capacitor Cin and feedback resistor Rfb form a high-pass "Zero". Additional
low-pass filtering is provided by optional output elements Rout and Cout, forming another
"Pole"; these elements can be eliminated if the required transfer function does not need
them.

The first step in our design process is to derive the transfer function for this circuit. To do
this we will make use of Mathcad’s “Symbolics” processor, just as we did with the simpler
inverting amplifier. We begin by writing equations for each of the circuit’s reactive elements
(capacitors):

Eqn1a XCin
1

2iπ Frq⋅ Cin⋅
=:=

Eqn1b XCfb
1

2iπ Frq⋅ Cfb⋅
=:=

Eqn1c XCout
1

2iπ Frq⋅ Cout⋅
=:=

Then we calculate the combined (complex) impedances of series/parallel RC branches:

Eqn2a XIN XCin Rin+=:=

Eqn2b XFB
1

1
XCfb

1
Rfb

+
=:=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 13 of 13 February 3, 2005

Then we write equations that describe the op-amp’s input characteristic s:
Eqn 3a Vio Vbias Vin − = :=

Eqn 3b I Inv Iib
1
2

Iio + = :=

Eqn 3c I NonInv Iib
1
2

Iio − = :=

Then we write our nodal equations:

Eqn 4a

IN Vin −
X IN

Vin Vout −
X FB

I Inv + = :=

Eqn 4b
Vin Vout −

X FB

Vout OUT −
Rout

I Out + = :=

Eqn 4c
Vout OUT −

Rout
OUT
X Cout

= :=

Eqn 4d
Vcc Vbias −

Rbias1
Vbias
Rbias2

I NonInv + = :=

Lastly, we combine all of them in a “Solve” block, and let the “Symbolics” processor grind-
out an answer:

Because of the large number of terms and intermediary values, the results (contained in
SysRes) are too large to display directly. As you can see above, Mathcad doesn’t even try
to display the results; however, the results ARE in the SysRes variable. In fact, even
stripping-apart SysRes to obtain the single result we care about (OUT), we get a long, ugly
‘mess’ of an equation that we can’t fully reproduce here (but is visible in Mathcad by making
use of the horizontal scroll bar); the beginning of it looks like:

OUT SysRes 1〈 〉()
1

1−
2

2 i Rbias2 Vcc⋅⋅⋅ i Rfb Rbias2 Iio⋅⋅⋅ 4 i π2 Frq2 Cin Rin Rbias1 Rbias2 Iio Rfb Cfb⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+ 8+
⋅→:=OUT SysRes 1〈 〉()

1
1−

2

2 i Rbias2 Vcc⋅⋅⋅ i Rfb Rbias2 Iio⋅⋅⋅ 4 i π2 Frq2 Cin Rin Rbias1 Rbias2 Iio Rfb Cfb⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+ 8+
⋅→:=

But, it doesn’t really matter that we cannot easily READ the equation, since we are going to
assign it to functions that we can call numerically. The two functions we wish to create are
“GAIN” and “OFFSET”, as those are the two characteristics we will later optimize the circuit
around. We start-out by deriving equations for “GAIN” and “OFFSET” based on the full

SysRes

Eqn1a

Eqn1b

Eqn1c

Eqn2a

Eqn2b

Eqn3a

Eqn3b

Eqn3c

Eqn4a

Eqn4b

Eqn4c

Eqn4d





































solve

OUT

Vout

Vbias

Vin

XIN

XFB

XCin

XCfb

XCout

IOut

IInv

INonInv







































, →:=SysRes

Eqn1a

Eqn1b

Eqn1c

Eqn2a

Eqn2b

Eqn3a

Eqn3b

Eqn3c

Eqn4a

Eqn4b

Eqn4c

Eqn4d





































solve

OUT

Vout

Vbias

Vin

XIN

XFB

XCin

XCfb

XCout

IOut

IInv

INonInv







































, →:=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 14 of 14 February 3, 2005

“OUT” equation; we do this by using judicious substitutions as shown below (again, the final
equations are too long to see here in their entirety, but are visible within Mathcad):

OFFSET OUT
substitute IN 0V=, Frq 0Hz=,

collect Vcc, Vio, Iib, Iio, Rfb,
i−

Rbias2
i− Rbias1⋅ i Rbias2⋅−

Vcc⋅⋅
1
2

2− i Rbias2⋅⋅ 2 i Rbias1⋅⋅−
i− Rbias1⋅ i Rbias2⋅−

Vio⋅⋅−
1−

2
2

⋅
+→:=OFFSET OUT

substitute IN 0V=, Frq 0Hz=,

collect Vcc, Vio, Iib, Iio, Rfb,
i−

Rbias2
i− Rbias1⋅ i Rbias2⋅−

Vcc⋅⋅
1
2

2− i Rbias2⋅⋅ 2 i Rbias1⋅⋅−
i− Rbias1⋅ i Rbias2⋅−

Vio⋅⋅−
1−

2
2

⋅
+→:=

GAIN
OUT

IN

substitute Vcc 0V=, Vio 0V=, Iio 0A=, Iib 0A=,

collect IN, Frq, π, Cout, Cfb, Cin,
1−
2

4 Rfb Rbias2⋅⋅ 4 Rfb Rbias1⋅⋅+() Cin π
8− Rout Rin⋅⋅(

⋅⋅⋅⋅→:=GAIN
OUT

IN

substitute Vcc 0V=, Vio 0V=, Iio 0A=, Iib 0A=,

collect IN, Frq, π, Cout, Cfb, Cin,
1−
2

4 Rfb Rbias2⋅⋅ 4 Rfb Rbias1⋅⋅+() Cin π
8− Rout Rin⋅⋅(

⋅⋅⋅⋅→:=

Notice that for deriving “OFFSET” we set the input signal (“IN”) to zero and we set the
frequency (“Frq”) to zero; this is a DC calculation with the input grounded. Similarly, when
deriving “GAIN” we set the power supply (Vcc) to zero, as we also do with all of the op-
amp input characteristics (Vio, Iio, and Iib); this is an AC calculation and DC terms need to
drop out. In both cases terms have been “collected” in order to obtain more readable
results; this allows observation of the contributions of key parameters of the calculation
(e.g. how Vcc and Vio affect the offset voltage of the circuit). Oddly enough, Mathcad
forces the derivation of “GAIN” to have “IN” as one of the collection terms even though
“IN” never actually appears in the resultant equation; for whatever reason, without that
collection term you will not receive a result.

Now that these two equations have been generated, we can assign them to functions that
can be called numerically (again, you cannot see the entire equation here):

Offset Rfb Rbias1, Rbias2, Vcc, Vio, Iio, Iib,() OFFSET i− Rbias2
i− Rbias1⋅ i Rbias2⋅−

Vcc⋅⋅ 1
2

2− i Rbias2⋅⋅ 2 i Rbias1⋅⋅−
i− Rbias1⋅ i Rbias2⋅−

Vio⋅⋅− +→:=

Gain Frq Rin, Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,() GAIN
1−

2
4 Rfb Rbias2⋅⋅ 4 Rfb Rbias1⋅⋅+() Cin π

8− Rout Rin⋅⋅(
⋅⋅⋅⋅→:=

GaindB Frq Rin, Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,() 20log Gain Frq Rin, Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,((:=

If we plug-in some initial values for the components (setting all resistors to 10kΩ and all
capacitors to 0.01µF), we can quickly determine the output offset voltage and plot the Bode
response of the circuit:

Rin 10kΩ:= Rfb Rin:= Rout Rin:= Rbias1 Rin:= Rbias2 Rin:=

Cin 0.01µF:= Cfb Cin:= Cout Cin:=

Vcc 5V:= Vio 10mV:= Iio 1µA:= Iib 0.1µA:=

Offset Rfb Rbias1, Rbias2, Vcc, Vio, Iio, Iib,() 2.4980V=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 15 of 15 February 3, 2005

0.01 0.1 1 10 100
80

70

60

50

40

30

20

10

0
Frequency Response of Filter

Frequency (kHz)

G
ai

n
(d

B)

Next, we wish to optimize the circuit so that it performs to some desired response. This
desired response (aka goal function) might be taken from a customer requirements
document, or from a specification created by the system designer. For this example, we are
going to fill a pair of vectors with Frequency/dB target points that we would like our filter’s
response to pass through. We can make use of an embedded Excel table to make the data-
entry easy and professional looking:

TargetFreqs

TargetdBs







 Frequency

(Hz)
Gain
(dB)

10 -30
32 -10

100 0
320 0
1000 0
3300 0

10000 -20
33000 -50

:=

As can be deduced by inspecting the table, we wish our filter to be “flat” from 100 to 3300
Hz, and have approximately 25dB/decade below and 45db/decade above that range.
Obviously, real world filters have slopes of 20 and 40 dB/decade, so, our optimized filter will
be “close, but no gold cigar”. There is NO way to exactly provide this shape, but, perhaps
we can create a filter that is “good enough”.

Before we can perform our optimization, we need to define an “Error” function, which the
optimizer will attempt to force to zero. For this example we will use a simple “Sum of the
squared errors” algorithm. This algorithm simplistically sums the square of the errors in
gain (dBs) at each of the target frequencies. The optimizer will call this function for each
permutation of component values that is attempted; when the optimizer finds a combination
that yields a minimal output from this function, it terminates and returns the optimal
values.

ERRORdBs Rin Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,()

ORIGIN

last TargetFreqs()

n

GaindB TargetFreqsn
Rin, Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,() TargetdBsn

−()2∑
=

:=

Finally we use the “Given…Minerr” construct to optimize the circuit element values:

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 16 of 16 February 3, 2005

Given

ERRORdBs Rin Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,() 0=

Offset Rfb Rbias1, Rbias2, Vcc, Vio, Iio, Iib,() 2.5000V=

1kΩ Rin≤ 100kΩ≤ 1kΩ Rfb≤ 100kΩ≤ 1kΩ Rout≤ 100kΩ≤

100pF Cin≤ 1µF≤ 100pF Cfb≤ 1µF≤ 100pF Cout≤ 1µF≤

Rin

Cin

Rfb

Cfb

Rout

Cout

Rbias1

Rbias2

























Minerr Rin Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,():=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 17 of 17 February 3, 2005

The component values that were chosen are:

Rbias1 9.9029kΩ= Rbias2 9.9018kΩ=

VOffset 2.5000V=Rin 8.6275kΩ= Rfb 13.5240kΩ= Rout 26.9265kΩ=

Cin 0.0780µF= Cfb 0.0054µF= Cout 0.0027µF=
Gain1kHz 2.0310=

Cin 7.8032 104× pF= Cfb 5358.4219pF= Cout 2692.6482pF=

We can plot our initial response and our optimized response as:

Optimized Design: Initial Guess:

0.01 0.1 1 10 100
60

40

20

0

Actual Response
Target Response

Frequency Response of Filter (Optimized)

Frequency (kHz)

G
ai

n
(d

B)

0.01 0.1 1 10 100
60

40

20

0

Actual Response
Target Response

Frequency Response of Filter (Original)

Frequency (kHz)

G
ai

n
(d

B)

Note that we needed to specify several points within the passband in order to force
Mathcad’s optimizer to keep the mid-band gain down. Without these ext ra points the
“skirts” become better matched and the mid-band gain became too large, as shown below:

0.01 0.1 1 10 100
60

40

20

0

Actual Response
Target Response

Frequency Response of Filter (Optimized)

Frequency (kHz)

G
ai

n
(d

B)

In fact, with two minor modifications we can provide additional constraints to make some
target points more important than others:
 - Add a “Weighting Factor” column to the data-entry table (see following examples)
 - Modify the “Error” function to multiply the squared error by the weight

ERRORdBs Rin Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,()

ORIGIN

last Target Freqs()

n

Weightsn GaindB TargetFreqs n
Rin, Cin, Rfb, Cfb, Rout, Cout, Rbias1, Rbias2,() TargetdBsn

−()2⋅ ∑
=

:=

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 18 of 18 February 3, 2005

Specifying that the two mid-band targets are 10X more important than the others yields the
following optimization results:

Target Freqs

TargetdBs

Weights









Frequency
(Hz)

Gain
(dB) Weight

10 -30 1
32 -10 1
100 0 1
320 0 10
1000 0 10
3300 0 1

10000 -20 1
33000 -50 1

:=

0.01 0.1 1 10 100
60

40

20

0

Actual Response
Target Response

Frequency Response of Filter (Optimized)

Frequency (kHz)

G
ai

n
(d

B)

Specifying that the two corner frequency targets are 10X more important than the others
yields the following optimization results:

Target Freqs

TargetdBs

Weights









Frequency
(Hz)

Gain
(dB) Weight

10 -30 1
32 -10 1
100 0 10
320 0 1
1000 0 1
3300 0 10

10000 -20 1
33000 -50 1

:=

0.01 0.1 1 10 100
60

40

20

0

Actual Response
Target Response

Frequency Response of Filter (Optimized)

Frequency (kHz)

G
ai

n
(d

B)

Conclusion
Mathcad is a very fast and powerful mathematical analysis package that can be used by
electrical designers to perform a variety of design and analysis tasks ranging from simple to
complex. The built-in “symbolic processor” allows us to easily construct complex transfer
functions from a simple collection of nodal equations. The built-in “optimizer” allows us to
easily arrive at optimal component values such that the circuit meets a given set of
constraints (targets). With these two features alone (and Mathcad has many more) EEs can
perform better, more accurate circuit designs than pen-and-paper methods; in many
instances better, more efficient circuit designs than using circuit simulators (like SPICE).

Using Mathcad To Derive Circuit Equations and Optimize Circuit Behavior

James C. (Jim) Bach Page 19 of 19 February 3, 2005

Biography:

Jim Bach received a BSEE (with a minor in Computer Science) from Marquette University in
1982. He began working for Delphi Electronic & Safety (DES) in 1986, when it was called
Delco Electronics. In his career at DES he has been a Systems Engineer, an Advanced
Development Engineer, an EE Simulation and Modeling Engineer, and now EE Analysis
Engineer and Mathcad Instructor. His primary background is in Powertrain Electronics
(engine and/or transmission control modules), although he’s assisted engineers in other
product lines. Primarily “analog” in nature, he enjoys working with circuits that interface
with sensors or control solenoids, as well as conditioning/filtering signals. Over the past few
years Jim has become DES’s resident expert in utilizing Mathcad for performing design and
analysis tasks, to the point of having created an internal 6-day, 8-session “Mathcad for
Engineers” training class and hosting periodic “Brown-Bag Lunch” seminars. Jim enjoys
circuit design and analysis, and the analytical tool known as Mathcad; putting the two of
them together and teaching about it is both challenging and rewarding.

Abstract
One of Mathcad’s strong points is that it has a built-in “symbolic processor”, which can be
used to combine a collection of nodal (circuit) equations and synthesize a set of equations
(e.g. transfer functions) for the circuit. This provides a simple and automated method of
“solving for N unknowns from N equations”. The article explains how to use this feature to
create transfer functions for a simple circuit; later the article illustrates how to use this
feature to create the transfer function of a more complicated circuit (bandpass filter) and
create a numeric function that can be used for design optimization and analysis.

Another of Mathcad's strong points is that it has a built-in "optimizer" capability, which can
be used to adjust any number of system variables until a set of "goal" conditions have been
met, or met with minimal error. This allows the engineer to make some initial guesses for
component values, and then have Mathcad figure-out what the optimal values would be
(say, to obtain a desired frequency response in a multi-stage filter network). The designer
can constrain component values to particular ranges, to prevent the optimizer from finding
problematically “too small” or “too large” of values. The designer can also create his own
“Error” function, which can be used to control the weighting of trade-offs in the optimization
process. This article explains how to use the optimizer to determine component values of a
simple circuit in order to make it meet some criteria; later the article illustrates how to use
this feature to optimize a more complicated circuit (bandpass filter) so that it approximates
a desired Bode response.

